Search results for "Young Tableau"
showing 3 items of 3 documents
Central idempotents and units in rational group algebras of alternating groups
1998
Let ℚAn be the group algebra of the alternating group over the rationals. By exploiting the theory of Young tableaux, we give an explicit description of the minimal central idempotents of ℚAn. As an application we construct finitely many generators for a subgroup of finite index in the centre of the group of units of ℚAn.
Asymptotics for the Amitsur's Capelli - Type Polynomials and Verbally Prime PI-Algebras
2006
We consider associativePI-algebras over a field of characteristic zero. The main goal of the paper is to prove that the codimensions of a verbally prime algebra [11] are asymptotically equal to the codimensions of theT-ideal generated by some Amitsur's Capelli-type polynomialsEM,L* [1]. We recall that two sequencesan,bnare asymptotically equal, and we writean≃bn,if and only if limn→∞(an/bn)=1.In this paper we prove that\(c_n \left( {M_k \left( G \right)} \right) \simeq c_n \left( {E_{k^2 ,k^2 }^ * } \right) and c_n \left( {M_{k,l} \left( G \right)} \right) \simeq c_n \left( {E_{k^2 + l^2 ,2kl}^ * } \right) \)% MathType!End!2!1!, whereG is the Grassmann algebra. These results extend to all v…
Jeu de Taquin and Diamond Cone for so(2n+1, C)
2020
International audience; The diamond cone is a combinatorial description for a basis of a natural indecomposable n-module, where n is the nilpotent factor of a complex semisimple Lie algebra g. After N. J. Wildberger who introduced this notion, this description was achieved for g = sl(n) , the rank 2 semisimple Lie algebras and g = sp (2n).In this work, we generalize these constructions to the Lie algebra g = so(2n + 1). The orthogonal semistandard Young tableaux were defined by M. Kashiwara and T. Nakashima, they index a basis for the shape algebra of so(2n + 1). Defining the notion of orthogonal quasistandard Young tableaux, we prove that these tableaux describe a basis for a quotient of t…